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A recently proposed model for skin cell proliferation �E. Clayton et al., Nature �London� 446, 185 �2007��
is extended to incorporate mitotic autoregulation, and hence homeostasis as a fixed point of the dynamics.
Unlimited cell proliferation in such a model can be viewed as a model for carcinogenesis. One way in which
this can arise is homeostatic metastability, in which the cell populations escape from the homeostatic basin of
attraction by a large but rare stochastic fluctuation. Such an event can be viewed as the final step in a multistage
model of carcinogenesis. Homeostatic metastability offers a possible explanation for the peculiar epidemiology
of lung cancer in ex-smokers.
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Cancer represents one of the outstanding health care is-
sues of present times. It is the second leading cause of death
in the US after heart disease �2006� �1�. Enormous strides
have been made toward understanding the molecular and ge-
netic basis of cancers, particularly since the completion of
the Human Genome Project. This has prompted at least one
eminent scientist to call for renewed efforts in the “war on
cancer” �2�. At the same time, researchers over many de-
cades have collected valuable data on the “dynamics of can-
cer” �3�. Such epidemiological studies also have the potential
to shed light on cancer mechanisms. In particular, it has long
been argued that the steepness of the age-incidence curves
supports the notion that a cell lineage has to transit through
one or more precancerous stages before finally presenting as
clinical cancer �3,4�. The transition rates in these so-called
multistage models are estimated in the order 10−6–10−4 per
year per cell lineage �3,5�.

While the transitions are usually interpreted in terms of
somatic mutations, a long-standing puzzle in the epidemiol-
ogy of lung cancer has been the apparent indifference of the
rate of the final transition step to the presence of a carcino-
gen �tobacco smoke� �6–8�. This has been interpreted as in-
dicating that a nonmutagenic mechanism might be at work.
One suggestion is that the final step is epigenetic in nature
�7�. Another suggestion is that the final step somehow in-
volves signaling �8�. Here I examine homeostatic metastabil-
ity as a candidate signaling mechanism. Homeostatic meta-
stability focuses on cell population dynamics and makes use
of concepts from dynamical systems theory �9�. The idea is
that under normal conditions the cell populations fluctuate
but remain in the basin of attraction of a homeostatic fixed
point. Cumulative somatic mutations in the components of
signaling pathways can shrink the size of the basin of attrac-
tion until the cell populations can escape by means of a large
but rare stochastic fluctuation. If such an escape results in
uncontrolled cell proliferation, one has a model for carcino-
genesis. Homeostatic metastability fits neatly in the multi-
stage picture since the initial mutations are stochastic rare
events, and the final step is also a stochastic rare event, albeit
a nonmutagenic one. Homeostatic metastability also fits into
the emerging “tissue organization field theory” cancer para-
digm �10�.

To present a concrete example of homeostatic metastabil-
ity, I extend a recently developed model for keratinocyte
�skin cell� proliferation. The mechanism of epithelial renewal
in the epidermis has much in common with that of the lungs
although the turnover time may be somewhat shorter �11,12�.
Therefore this model may still have relevance to lung cancer.
I also deliberately adopt a “physics-oriented” approach in
which the extended model is kept as simple as possible to
expose the general mechanisms at work �i.e., relying on the
generalities of dynamical systems theory�. In particular it is
not claimed that the biology is necessarily accurately repre-
sented.

The epidermis is the outermost part of the skin barrier,
comprising 10–20 layers of skin cells which are predomi-
nantly keratinocytes �13�. These cells originate in the quasi-
two-dimensional basal layer of the epidermis, move up
through the middle layers, and are finally shed from the out-
ermost layer at a desquamation rate of the order
103 cells h−1 mm−2 �12�. This means that cells have to pro-
liferate continuously in the basal layer to replenish the supra-
basal layers. The recently developed model for keratinocyte
proliferation in the basal layer is the single progenitor cell
�SPC� model of Clayton et al. �14,15�. It is supported by
elegant in vivo experiments on mouse tail keratinocyte
clones with an inducible genetic label. In the SPC model,
there are two basal layer cell types or compartments: pro-
genitor cells A and postmitotic cells B. These proliferate ac-
cording to

A → A + A rate �1, A → A + B rate �2,

A → B + B rate �3, B → � rate � . �1�

The first three processes represent possible progenitor cell
division pathways. The last process represents postmitotic
cells leaving the basal layer. The mean-field �or expected-
value� population dynamics equations corresponding to these
processes are

ṅA = ��1 − �3�nA, ṅB = ��2 + 2�3�nA − �nB, �2�

where nA and nB are the individual cell densities. Neglecting
spatial correlations �i.e., making a “well-mixed” assump-
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tion�, these equations are exact for the original SPC model
since the processes in Eq. �1� are first order with constant
rates. They are only approximate for the extended models
discussed below where the rates may depend nonlinearly on
the cell population densities.

Equations �2� indicate that the progenitor cell division
pathways must be finely tuned ��1=�3� otherwise the cell
populations either grow or vanish exponentially �16�. Thus,
writing �1=�3=�r and �2=��1−2r�, Clayton et al. find
��0.16 day−1, r�0.08, and ��0.045 day−1, compatible
with the above-mentioned desquamation rate. From Eqs. �2�
an additional steady state condition for the cell populations is
�=��1−�� /�, where �=nA /n is the fraction of progenitor
cells and n=nA+nB is the total cell density. For the SPC
model with parameter values corresponding to mouse tail
skin, ��0.22. The corresponding phase-space portrait and a
representative stochastic trajectory are shown in Fig. 1�a�. To
generate the stochastic trajectory, a patch of area A initially
containing N0=200 cells is simulated, interpreting the pro-
cesses in Eq. �1� as quasichemical reactions and assuming
the system remains well mixed. The standard Gillespie ki-
netic Monte Carlo algorithm is used �17�. The ordinate in
Fig. 1 is n /n0, where n0=N0 /A is the initial cell density. The
actual value of A does not need to be specified.

While providing an eminently satisfactory explanation for
the keratinocyte clone data, the original SPC model lacks
homeostasis in the sense that it possesses a line of stable
fixed points at ��0.22, shown in Fig. 1�a�. Also it is struc-
turally unstable in the language of dynamical systems theory
and not generally robust against perturbations; for example,
it cannot accommodate the introduction of a small popula-
tion of stem cells �S→S+A �18�� without making additional
fine-tuning assumptions. One obvious solution to this is to
extend the model to include mitotic autoregulation �19�, rep-
resenting the fact that cellular fates are governed by integra-
tion of autocrine and paracrine signaling factors �20�. Indeed
this idea was already suggested by Jones and Simons as an
avenue for further investigation �21�. In such an autoregulat-
ing SPC �ASPC� model, homeostasis would arise as a con-
sequence of the cell population dynamics driving the system
to a fixed point of the dynamics. A fixed point in a model of
this type represents homeostasis in several ways. First, if the
cell populations are perturbed, they will tend to return to the
original fixed point. Second, fluctuations in the cell popula-
tions will tend to be limited to the vicinity of the fixed point.
Third, such a model would be structurally stable from the
point of view of dynamical systems theory and able to with-
stand perturbations �such as the presence of a small popula-
tion of stem cells� without leading to a qualitative change in
behavior. Also it is clear that this behavior should be generic
to a wide class of ASPC models since the existence of an
isolated stable fixed point is a structurally stable feature of
the dynamics �22�.

To develop such an ASPC model, in keeping with the
physics-oriented approach, I introduce a control parameter
q=q��� to describe a bias in the symmetric cell division fates
�23�. Thus

�1 = �r�1 − q�, �2 = ��1 − 2r�, �3 = �r�1 + q� . �3�

I additionally suppose that �=��n� is a decreasing function
of the total number density ����0� representing the fact that

the progenitor cell proliferation rate should be reduced if the
overall cell density increases. With these assumptions, the
fixed points of Eqs. �2� are determined by q���=0 and
��n�=��1−�� /�. It is a straightforward exercise to show, in
the language of dynamical system theory, that a fixed point is
a stable node if q��0, and a saddle if q��0.

A concrete model of this type has
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FIG. 1. �Color online� Phase-space portraits for �a� the SPC
model, �b� an ASPC model, and �c� an ASPC model exhibiting
homeostatic metastability. The axes are the progenitor cell fraction,
�, and the ratio between the current and initial �and target� total cell
densities, n /n0. Thin lines �black� are phase-space flows, with the
direction indicated by the arrows. In �a� the thick line �blue� is the
line of fixed points of the SPC model. In �b� and �c� the filled circles
�blue� are homeostatic stable fixed points �nodes�. In �c� the open
circle �blue� is an unstable fixed point �a saddle�, lying on the ho-
meostatic basin boundary shown as a dashed line �blue�. Jagged
lines �red� are representative stochastic trajectories.
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� = �0�n0

n
��

, q = tanh���0�1 − �0��� − �0�
��1 − �� 	 , �4�

where �0=��1−�0� /�0. This model has a stable node at a
target population density n0 and progenitor cell fraction �0.
These functions have been arbitrarily chosen for illustrative
purposes although with care to make sure that they have the
appropriate limiting behaviors. For the results presented be-
low I use �=2 and �=10 in Eq. �4�, which allows for sto-
chastic fluctuations of moderate amplitude. I have checked
that the results are qualitatively insensitive to this choice.
Figure 1�b� shows the phase-space portrait and a representa-
tive stochastic trajectory for this ASPC model, with a fixed
point chosen to lie at �0=0.22 and a target population size
n0=N0 /A, where N0=200. Again the actual value of A does
not need to be explicitly specified although it could be inter-
preted as representing the area of influence of diffusible in-
tercellular signaling factors. Figure 1�b� shows, in contrast to
Fig. 1�a�, that this ASPC model has an isolated stable fixed
point, whose basin of attraction extends to cover the whole
plane. The stochastic trajectory is strongly localized to the
vicinity of the fixed point.

I turn now to cancer modeling. In this context, carcino-
genesis is considered to be unlimited cell proliferation
caused either by the simple loss of stability of the homeo-
static fixed point or by a large but rare stochastic fluctuation
causing the system leaving the homeostatic basin of attrac-
tion �homeostatic metastability�. My studies of models com-
prising A, A�, and B cells, with a process A→A� representing
a somatic mutation �cf. Klein et al. �15��, shows that both
phenomena can easily be observed. However the resulting
three-dimensional phase-space portraits are tricky to present.
To illustrate the mechanism of homeostatic metastability in
its simplest form therefore, I return to the original ASPC
model but introduce a re-entrant bias control function q���.
Such a model is a prototypical example of a system which is
near a saddle-node bifurcation.

An example of a re-entrant q��� is given by inserting an
extra factor ��1−�� / ��1−�0� in the argument to the tanh
function in Eq. �4�. This model has a stable node at �=�0 and
a saddle at �=�1. The saddle-node bifurcation is approached
as ��=�1−�0 vanishes. The phase-space portrait and a rep-
resentative stochastic trajectory for this ASPC model are
shown in Fig. 1�c� for ��=0.04 �other parameters as for the
original ASPC model�. The homeostatic basin of attraction is
now confined to the lower left region. The saddle lies on the
homeostatic basin boundary. The simulations show that the
system may escape from the homeostatic basin, typically in
the vicinity of the saddle. After this the cell populations grow
without limit.

To characterize the escape event, I generate a large set of
trajectories and compute an escape rate u from the first pas-
sage time distribution �Fig. 2 inset�. The main plot in Fig. 2
shows that u decreases approximately exponentially with
N0��2. The dependence of u on � and � is more complex
and not necessarily monotonic. The sensitive dependence on
the target population size N0 is typical of system size effects
found for other nonequilibrium phase transitions �24� al-
though the scaling collapse onto N0��2 remains unexplained.

The key point is that, extrapolating from Fig. 2, the homeo-
static escape rate u can easily be made comparable to multi-
stage transition rates quoted in the introduction �25�.

Some general points can be made about directions for
future research. First, the present analysis neglects both spa-
tial correlations and, to some extent, number fluctuations.
The potentially critical importance of these factors for the
behavior of models in two spatial dimensions is well known
�26�. The extension of the present ASPC models to fully
fledged two-dimensional models is therefore an obvious next
step. For example Klein et al. were motivated to examine a
spatially resolved version of the original SPC model �27�.
They found that their original results still hold, albeit with a
modified value of r�0.2. Another direction in which
progress could be made is to improve the representation of
the biology, for example, moving to multiscale �28� or agent-
based models �29�, which can capture the details of the in-
tercellular and intracellular signaling pathways and also the
essential stochastic nature of individual cell fates.

A generic conclusion of the present Rapid Communica-
tion is that it may not be valid to examine just the determin-
istic consequences of somatic mutations since rare but large
fluctuations in cell populations may occur at comparable
rates. This makes the task of examining the behavior of more
biologically detailed models rather formidable. Brute force
methods have been used in the present Rapid Communica-
tion since the underlying stochastic processes are rather
simple. This may not be possible for more complex models,
where it may be necessary to bring to bear more sophisti-
cated techniques such as transition path sampling �30� or
forward-flux sampling �31�.

Finally, of course, experiments are very desirable. As
Frank points out �3�, the interpretation of the lung cancer
epidemiology data is not unambiguous and should be sup-
ported by other experimental evidence. A central feature of
the idea of homeostatic metastability is that the cells them-
selves do not undergo any change if the system escapes from
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FIG. 2. �Color online� Inset: a typical metastable trajectory from
Fig. 1�c�; the first passage time 	 is found to be distributed as 
e−u	

allowing an escape rate u to be defined. Main plot: escape rate u
plotted as a function of x=N0��2. Data were collected for various
N0 and �colored� for ��=0.030�0.005�0.055 �six values�. The line
is u=Ax−
e−bx, where A=1.87�0.05 yr−1, 
=0.32�0.01, and
b=4.59�0.04.
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homeostasis; only the microenvironment changes. Thus, for
example, if individual cells from a neoplasm were to be used
to seed cancer at sites elsewhere in the organism, one might
expect a poor success rate. All such an experiment should do
is establish a pool of cell lineages which are in the penulti-
mate precancerous stage, with a concomitant statistical sig-
nature in the time-resolved success rate. Recent experiments

of this type do indeed show a poor success rate although this
is commonly attributed to the hypothesis that only a rare
subpopulation of “cancer stem cells” have the potential to
develop into new clones �32�.

I thank Rosalind Allen, Mike Cates, and Martin Evans for
helpful discussions and encouragement.
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